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Introduction

Let B(H) be the algebra of bounded linear operators acting on the
Hilbert space H equipped with the inner product ⟨x , y⟩.

If H has dimension n, we identify B(H) with Mn, the algebra of n × n
matrices with inner product ⟨x , y⟩ = y∗x = x1ȳ1 + · · · + xnȳn.
The numerical range of A ∈ B(H) is the set

W (A) = {⟨Ax , x⟩ : x ∈ H, ⟨x , x⟩ = 1}.

If A ∈ Mn, then W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

The numerical range of A can be viewed as a “picture”
of the operator A containing useful information of the
operator A. Every point ⟨Ax , x⟩ is a “pixel” of the picture.
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Examples and Convexity

Note that W (A) = W (U∗AU) if U is unitary.

If A =
(

0 2
0 0

)
, then W (A) = {µ ∈ C : |µ| ≤ 1}

is the unit disk centered at the origin.

More generally, if A =
(

a1 b
0 a2

)
, then W (A) is the

elliptical disk with foci a1, a2 and minor axis of length |b|.

If A =
(

a1
a2

a3

)
, then W (A) is the triangular disk

with vertices a1, a2, a3.
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Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]
The numerical range of A ∈ B(H) is always convex,

i.e., {tµ1 + (1 − t)µ2 : t ∈ [0, 1]} ⊆ W (A) whenever µ1, µ2 ∈ W (A).

Proposition
Let A ∈ B(H).

A = µI if and only if W (A) = {µ};
A = A∗ if and only if W (A) ⊆ R;
A is positive semidefinite if and only if W (A) ⊆ [0, ∞);

Remarks Finding all values ⟨Ax , x⟩ is difficult.

One may consider ⟨Ax , x⟩ for some random unit vectors.

Then estimate the probability that A = λI, A = A∗, A ≥ 0, etc.
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Quantum Computing

Information is encoded in a quantum state, which is represented as unit
vectors x0 ∈ Cn. (Quantum postulate 1.)

Apply a quantum operation, which is a unitary operator, to the quantum
state: x0 7→ x = Ux0. (Quantum postulate 3.)
Apply a measurement to x to extract useful information.
An observable is associated with a Hermitian matrix A so that a
measurement of x will yield an eigenvalue λ of A, and
x will “collapse” to an unit eigenvector v of λ. (Quantum postulate 2.)
The expectation of the observable is x∗Ax if one can apply the
measurement to many identical copies of x .
So, for an observable associated with the Hermitian matrix A, the set of
expected values of the measurement for all quantum states is

W (A) = {x∗Ax : x ∈ Cn, ∥x∥ = 1}.

In general, we use the initial state x0 = (1, 0, . . . , 0)t , and find suitable U
and A such that the measurement of x = U0 give useful information.
Many theoretical and implementation issues have to be addressed.
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The joint numerical range

In some problems, it is useful to consider different observables A1, . . . , Am.
Define the joint numerical range of A = (A1, . . . , Am) by

W (A) = {(⟨A1x , x⟩, . . . , ⟨Amx , x⟩) : x ∈ H, ⟨x , x⟩ = 1} ⊆ Rm.

Let A = A1 + iA2 ∈ B(H), where A1 = A∗
1 and A2 = A∗

2 . Then

W (A) ≡ W (A1, A2) = {(⟨A1x , x⟩, ⟨A2x , x⟩) : x ∈ H, ⟨x , x⟩ = 1} ⊆ R2.

The set W (A1, A2, A3) may not be convex. For example, if

A1 =
(

0 1
1 0

)
, A2 =

(
0 −i
i 0

)
, A3 =

(
1 0
0 −1

)
,

then W (A1, A2, A3) = {(µ1, µ2, µ3) : µ2
1 + µ2

2 + µ2
3 = 1}.

(Au-Yeung and Poon, 1979) If n ≥ 3 and A = (A1, A2, A3) ∈ Mn is a
triple of Hermitian matrices, then W (A) is convex.
If m ≥ 4, then W (A1, . . . , Am) may not be convex even if dim H = ∞.
Open problem. Characterize A = (A1, . . . , Am) such that W (A) is convex.
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Commuting family of Hermitian matrices

If A1, . . . , Am are mutually commuting Hermitian matrices, then W (A) is
a polyhedral set, i.e., the convex hull of a finite set.

In quantum mechanics, if A, B are Hermitian matrices, then for any unit
vector x ∈ Cn and (α, β) = (x∗Ax , x∗Bx),

x∗(A − αI)2xx∗(B − βI)2x ≥ |x∗(AB − BA)x |2.

This is known as the uncertainty principle.
The product of the variances of the observables associated with A, B is bounded away from 0 if AB ̸= BA.

Current research Generalize the uncertainty principle to multiple
observables (Hermitian matrices), and determine the equality case.
(Li, Poon, Wang, 2020) A set {A1, . . . , Am} ⊆ Mn has commuting normal
matrices if and only if there is a positive integer k with |n/2 − k| ≤ 1
such that the joint k-numerical range

Wk(A1, . . . , Am) = {(tr A1P, . . . , tr AmP) : P ∈ Dn, P = kP2}

is a polyhedral set. kP = (kP)2 is a rank j Hermitian projection.
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The joint higher rank numerical range

The joint rank p-numerical range of A = (A1, . . . , Am) is the set Λp(A) of real
m-tuples (a1, . . . , am) for the existence of a unitary U ∈ Mn satisfying

U∗AjU =
(

aj Ip ⋆
⋆ ⋆

)
, j = 1, . . . , m.

If Vp is the set of operator X : Cp → H such that X ∗X = Ip, then

Λp(A) = {(a1, . . . , am) : X ∗AjX = aj Ip for some X ∈ Vp} .

This concept was introduced in [Choi, Kribs, Zyczkowski, 2006] for the study of
quantum error correction schemes.
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Quantum error correction

A quantum channel acting on Dn is represented by a trace preserving
completely positive (TPCP) map E : Mn → Mn of the form

E(A) = F1AF ∗
1 + · · · + Fr AF ∗

r ,

where F ∗
1 F1 + · · · + F ∗

r Fr = In.

An error correction code is a subspace V ⊆ Cn for the existence of a
TPCP map (known as the recovery channel) R such that

R ◦ E(A) = A whenever PV APV = A,

where PV is the orthogonal projection with range space V .
We can always find a basis {A1, . . . , Ak} of span {F ∗

i Fj : 1 ≤ i , j ≤ r}
consisting of Hermitian matrices.
Then E has a quantum error correction of dimension p if and only if

Λp(A1, . . . , Am) ̸= ∅.
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Some results and problems

We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to
construct quantum error correction for different channels.

In general, the set Λp(A1) may be empty if p > m/2.
If Λp(A) is convex, one can derive efficient algorithm to find its elements,
and construct quantum error correction codes accordingly.
However, one only has convexity if m ≤ 2.

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

The set may not be convex if m > 2.
Open problem Characterize A = (A1, . . . , Am) so that Λp(A) is convex.
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Star-shapedness

There is no general convexity result for Λp(A)!

Recall that a set S ⊆ RN is star-shaped if there is
a star center v0 ∈ S such that the line segment joining
v0 to any other point v ∈ S lie in S.

Star-shaped domains are useful in pure or applied study.
A star-shaped set may have more than one star center.
In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]
Let A1, . . . , Am ∈ B(H)m be self-adjoint operators, p ∈ N, and N = p(m + 2).
Suppose dim H ≥ (N − 1)(m + 1)2, which is trivially true if dim H = ∞.
(a) The set ΛN(A) is non-empty.
(b) Every element in convΛN(A) ⊆ Λp(A) is a star-center of Λp(A).
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Related concepts and further research

The result has been further extended to the joint (p, q)-matricial range in
[Lau, Li, Poon, Sze, 2017].
The joint (p, q)-matricial range of (A1, . . . , Am) is the set of m-tuples
(B1, . . . , Bm) ∈ Mm

q for the existence of X with X ∗X = Ipq such that

X ∗AjX = Ip ⊗ Bj =

Bj
. . .

Bj

 , j = 1, . . . , m.

If Λp,q(A) is non-empty, one can construct better quantum error
correction schemes.
Find the smallest dim H that ensures Λp(A) ̸= ∅ for all A ∈ B(H)m.
Find the smallest dim H that ensures Λp,q(A) ̸= ∅ for all A ∈ B(H)m.
Study the convexity of Λp,q(A1, . . . , Am) for A1, . . . , Am with special
structure (arising in applications).
Apply the results to quantum information science.
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Your comments are most welcome!

Thank you for your attention!

Chi-Kwong Li, College of William & Mary Numerical range techniques, quantum information science


