Numerical range techniques in Quantum information science

Chi-Kwong Li (Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

< 回 > < 三 > < 三

 Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If *H* has dimension *n*, we identify B(H) with \mathbf{M}_n , the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^* x = x_1 \overline{y}_1 + \cdots + x_n \overline{y}_n$.

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y^{*}x = x₁y₁ + · · · + x_ny_n.
- The numerical range of $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \}.$$

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y^{*}x = x₁y₁ + · · · + x_ny_n.
- The numerical range of $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \}.$$

• If
$$A \in \mathbf{M}_n$$
, then $W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}.$

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y^{*}x = x₁y₁ + · · · + x_ny_n.
- The numerical range of $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \}.$$

- If $A \in \mathbf{M}_n$, then $W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}.$
- The numerical range of A can be viewed as a "picture" of the operator A containing useful information of the operator A. Every point (Ax, x) is a "pixel" of the picture.

イロト イボト イラト イラト

Examples and Convexity

• Note that $W(A) = W(U^*AU)$ if U is unitary.

• If
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
, then $W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1\}$

is the unit disk centered at the origin.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Examples and Convexity

• Note that $W(A) = W(U^*AU)$ if U is unitary.

• If
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
, then $W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1\}$

is the unit disk centered at the origin.

• More generally, if
$$A = \begin{pmatrix} a_1 & b \\ 0 & a_2 \end{pmatrix}$$
, then $W(A)$ is the elliptical disk with foci a_1, a_2 and minor axis of length $|b|$.

- 4 回 ト 4 三 ト 4 三 ト

Examples and Convexity

• Note that $W(A) = W(U^*AU)$ if U is unitary.

• If
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
, then $W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1\}$

is the unit disk centered at the origin.

• More generally, if
$$A = \begin{pmatrix} a_1 & b \\ 0 & a_2 \end{pmatrix}$$
, then $W(A)$ is the elliptical disk with foci a_1, a_2 and minor axis of length $|b|$

• If
$$A = \begin{pmatrix} a_1 & a_2 \\ & a_3 \end{pmatrix}$$
, then $W(A)$ is the triangular disk with vertices a_1, a_2, a_3 .

The numerical range of $A \in B(H)$ is always convex,

・ 同下 ・ ヨト ・ ヨト

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

•
$$A = \mu I$$
 if and only if $W(A) = \{\mu\}$;

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

• $A = \mu I$ if and only if $W(A) = {\mu};$

• $A = A^*$ if and only if $W(A) \subseteq \mathbb{R}$;

イロト イポト イヨト イヨト

3

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

- $A = \mu I$ if and only if $W(A) = \{\mu\};$
- $A = A^*$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq [0, \infty)$;

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

- $A = \mu I$ if and only if $W(A) = \{\mu\};$
- $A = A^*$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq [0, \infty)$;

Remarks Finding all values $\langle Ax, x \rangle$ is difficult.

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

- $A = \mu I$ if and only if $W(A) = \{\mu\};$
- $A = A^*$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if W(A) ⊆ [0,∞);

Remarks Finding all values $\langle Ax, x \rangle$ is difficult.

One may consider $\langle Ax, x \rangle$ for some random unit vectors.

The numerical range of $A \in B(H)$ is always convex,

i.e.,
$$\{t\mu_1+(1-t)\mu_2:t\in [0,1]\}\subseteq W(\mathcal{A})$$
 whenever $\mu_1,\mu_2\in W(\mathcal{A}).$

Proposition

Let $A \in B(H)$.

- $A = \mu I$ if and only if $W(A) = \{\mu\}$;
- $A = A^*$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if W(A) ⊆ [0,∞);

Remarks Finding all values $\langle Ax, x \rangle$ is difficult.

One may consider $\langle Ax, x \rangle$ for some random unit vectors.

Then estimate the probability that $A = \lambda I, A = A^*, A \ge 0$, etc.

• Information is encoded in a quantum state, which is represented as unit vectors $x_0 \in \mathbb{C}^n$. (Quantum postulate 1.)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)

イロト イボト イヨト

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.

イロト イボト イヨト

3

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.
 An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.
 An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is x^*Ax if one can apply the measurement to many identical copies of x.

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.
 An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is x^*Ax if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix *A*, the set of expected values of the measurement for all quantum states is

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, ||x|| = 1\}.$$

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.
 An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is x^*Ax if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix *A*, the set of expected values of the measurement for all quantum states is

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, \|x\| = 1\}.$$

• In general, we use the initial state $x_0 = (1, 0, ..., 0)^t$, and find suitable U and A such that the measurement of $x = U_0$ give useful information.

- Information is encoded in a quantum state, which is represented as unit vectors x₀ ∈ Cⁿ. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_0 \mapsto x = Ux_0$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.
 An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is x^*Ax if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix *A*, the set of expected values of the measurement for all quantum states is

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, ||x|| = 1\}.$$

- In general, we use the initial state $x_0 = (1, 0, ..., 0)^t$, and find suitable U and A such that the measurement of $x = U_0$ give useful information.
- Many theoretical and implementation issues have to be addressed.

イロト イボト イヨト

3

Chi-Kwong Li, College of William & Mary Numerical range techniques, quantum information science

・ 同 ト ・ ヨ ト ・ ヨ

In some problems, it is useful to consider different observables A_1, \ldots, A_m .

イロン 不同 とうほどう ほどう

臣

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1x, x \rangle, \dots, \langle A_mx, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1x, x \rangle, \dots, \langle A_mx, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

• Let $A = A_1 + iA_2 \in B(H)$, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then

$$W(A) \equiv W(A_1, A_2) = \{(\langle A_1 x, x \rangle, \langle A_2 x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1x, x \rangle, \dots, \langle A_mx, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

• Let $A = A_1 + iA_2 \in B(H)$, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then $W(A) \equiv W(A_1, A_2) = \{(\langle A_1x, x \rangle, \langle A_2x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subset \mathbb{R}^2.$

• The set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

イロト 不得 トイラト イラト・ラ

nan

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1 x, x \rangle, \dots, \langle A_m x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

• Let
$$A = A_1 + iA_2 \in B(H)$$
, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then
 $W(A) \equiv W(A_1, A_2) = \{(\langle A_1 x, x \rangle, \langle A_2 x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^2.$

• The set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{(\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1\}.$

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1x, x \rangle, \dots, \langle A_mx, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

• Let $A = A_1 + iA_2 \in B(H)$, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then

$$W(A) \equiv W(A_1, A_2) = \{(\langle A_1x, x \rangle, \langle A_2x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^2.$$

• The set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

イロト イポト イヨト イヨト

(Au-Yeung and Poon, 1979) If n ≥ 3 and A = (A₁, A₂, A₃) ∈ M_n is a triple of Hermitian matrices, then W(A) is convex.

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{(\langle A_1x, x \rangle, \dots, \langle A_mx, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m.$$

• Let
$$A = A_1 + iA_2 \in B(H)$$
, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then

$$W(A)\equiv W(A_1,A_2)=\{(\langle A_1x,x
angle,\langle A_2x,x
angle):x\in H,\langle x,x
angle=1\}\subseteq \mathbb{R}^2.$$

• The set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{(\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1\}.$

- (Au-Yeung and Poon, 1979) If n ≥ 3 and A = (A₁, A₂, A₃) ∈ M_n is a triple of Hermitian matrices, then W(A) is convex.
- If $m \ge 4$, then $W(A_1, \ldots, A_m)$ may not be convex even if dim $H = \infty$.

In some problems, it is useful to consider different observables A_1, \ldots, A_m . Define the joint numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ by

$$W(\mathbf{A}) = \{ (\langle A_1 x, x \rangle, \dots, \langle A_m x, x \rangle) : x \in H, \langle x, x \rangle = 1 \} \subseteq \mathbb{R}^m.$$

• Let $A = A_1 + iA_2 \in B(H)$, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then

$$W(A)\equiv W(A_1,A_2)=\{(\langle A_1x,x
angle,\langle A_2x,x
angle):x\in H,\langle x,x
angle=1\}\subseteq \mathbb{R}^2.$$

• The set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{(\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1\}.$

- (Au-Yeung and Poon, 1979) If n ≥ 3 and A = (A₁, A₂, A₃) ∈ M_n is a triple of Hermitian matrices, then W(A) is convex.
- If $m \ge 4$, then $W(A_1, \ldots, A_m)$ may not be convex even if dim $H = \infty$.
- Open problem. Characterize $\mathbf{A} = (A_1, \dots, A_m)$ such that $W(\mathbf{A})$ is convex.

Commuting family of Hermitian matrices

• If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.

(日本) (日本) (日本)

- If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^n$ and $(\alpha, \beta) = (x^*Ax, x^*Bx)$,

$$x^*(A - \alpha I)^2 x x^*(B - \beta I)^2 x \ge |x^*(AB - BA)x|^2.$$

(日本) (日本) (日本)

- If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector x ∈ Cⁿ and (α, β) = (x*Ax, x*Bx),

$$x^*(A - \alpha I)^2 x x^*(B - \beta I)^2 x \ge |x^*(AB - BA)x|^2.$$

• This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $AB \neq BA$.

イロト イポト イヨト イヨト

- If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector x ∈ Cⁿ and (α, β) = (x*Ax, x*Bx),

$$x^*(A - \alpha I)^2 x x^*(B - \beta I)^2 x \ge |x^*(AB - BA)x|^2.$$

• This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $AB \neq BA$.

• Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.

イロト イボト イヨト

- If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector x ∈ Cⁿ and (α, β) = (x*Ax, x*Bx),

$$x^*(A - \alpha I)^2 x x^*(B - \beta I)^2 x \ge |x^*(AB - BA)x|^2.$$

• This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $AB \neq BA$.

- Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.
- (Li, Poon, Wang, 2020) A set {A₁,..., A_m} ⊆ M_n has commuting normal matrices if and only if

イロト 不得 トイラト イラト・ラ

- If A_1, \ldots, A_m are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector x ∈ Cⁿ and (α, β) = (x*Ax, x*Bx),

$$x^*(A - \alpha I)^2 x x^*(B - \beta I)^2 x \ge |x^*(AB - BA)x|^2.$$

• This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $AB \neq BA$.

- Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.
- (Li, Poon, Wang, 2020) A set {A₁,..., A_m} ⊆ M_n has commuting normal matrices if and only if there is a positive integer k with |n/2 k| ≤ 1 such that the joint k-numerical range

$$W_k(A_1,\ldots,A_m) = \{(\operatorname{tr} A_1P,\ldots,\operatorname{tr} A_mP): P \in \mathbf{D}_n, P = kP^2\}$$

is a polyhedral set. $kP = (kP)^2$ is a rank *j* Hermitian projection.

イロト 不得下 イヨト イヨト 二日

The joint rank *p*-numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ is the set $\Lambda_p(\mathbf{A})$ of real *m*-tuples (a_1, \ldots, a_m) for the existence of a unitary $U \in \mathbf{M}_n$ satisfying

$$U^*A_jU = \begin{pmatrix} a_jI_p & \star \\ \star & \star \end{pmatrix}, \qquad j = 1, \ldots, m.$$

・ 同下 ・ ヨト ・ ヨト

The joint rank *p*-numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ is the set $\Lambda_p(\mathbf{A})$ of real *m*-tuples (a_1, \ldots, a_m) for the existence of a unitary $U \in \mathbf{M}_n$ satisfying

$$U^*A_jU = \begin{pmatrix} a_jI_p & \star \\ \star & \star \end{pmatrix}, \qquad j = 1, \dots, m.$$

If V_p is the set of operator $X: \mathbb{C}^p \to H$ such that $X^*X = I_p$, then

$$\Lambda_p(\mathbf{A}) = \{(a_1, \ldots, a_m) : X^* A_j X = a_j I_p \text{ for some } X \in V_p\}.$$

(4月) トイラト イラト

The joint rank *p*-numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ is the set $\Lambda_p(\mathbf{A})$ of real *m*-tuples (a_1, \ldots, a_m) for the existence of a unitary $U \in \mathbf{M}_n$ satisfying

$$U^*A_jU = \begin{pmatrix} a_jI_p & \star \\ \star & \star \end{pmatrix}, \quad j = 1, \dots, m.$$

If V_p is the set of operator $X : \mathbb{C}^p \to H$ such that $X^*X = I_p$, then

$$\Lambda_p(\mathbf{A}) = \{(a_1, \ldots, a_m) : X^* A_j X = a_j I_p \text{ for some } X \in V_p\}.$$

This concept was introduced in [Choi, Kribs, Zyczkowski, 2006] for the study of quantum error correction schemes.

イロト イボト イヨト イヨト

 A quantum channel acting on D_n is represented by a trace preserving completely positive (TPCP) map E : M_n → M_n of the form

$$\mathcal{E}(A) = F_1 A F_1^* + \cdots + F_r A F_r^*,$$

where $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

イロト イポト イヨト イヨト

nan

 A quantum channel acting on D_n is represented by a trace preserving completely positive (TPCP) map E : M_n → M_n of the form

$$\mathcal{E}(A) = F_1 A F_1^* + \cdots + F_r A F_r^*,$$

where $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

• An error correction code is a subspace $V \subseteq \mathbb{C}^n$ for the existence of a TPCP map (known as the recovery channel) \mathcal{R} such that

 $\mathcal{R} \circ \mathcal{E}(A) = A$ whenever $P_V A P_V = A$,

where P_V is the orthogonal projection with range space V.

イロト 不得下 イヨト イヨト 二日

 A quantum channel acting on D_n is represented by a trace preserving completely positive (TPCP) map E : M_n → M_n of the form

$$\mathcal{E}(A) = F_1 A F_1^* + \cdots + F_r A F_r^*,$$

where $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

 An error correction code is a subspace V ⊆ Cⁿ for the existence of a TPCP map (known as the recovery channel) R such that

$$\mathcal{R} \circ \mathcal{E}(A) = A$$
 whenever $P_V A P_V = A$,

where P_V is the orthogonal projection with range space V.

We can always find a basis {A₁,..., A_k} of span {F_i*F_j : 1 ≤ i, j ≤ r} consisting of Hermitian matrices.

イロト イポト イヨト イヨト

 A quantum channel acting on D_n is represented by a trace preserving completely positive (TPCP) map E : M_n → M_n of the form

$$\mathcal{E}(A) = F_1 A F_1^* + \cdots + F_r A F_r^*,$$

where $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

• An error correction code is a subspace $V \subseteq \mathbb{C}^n$ for the existence of a TPCP map (known as the recovery channel) \mathcal{R} such that

 $\mathcal{R} \circ \mathcal{E}(A) = A$ whenever $P_V A P_V = A$,

where P_V is the orthogonal projection with range space V.

- We can always find a basis {A₁,..., A_k} of span {F_i*F_j : 1 ≤ i, j ≤ r} consisting of Hermitian matrices.
- Then \mathcal{E} has a quantum error correction of dimension p if and only if

$$\Lambda_{\rho}(A_1,\ldots,A_m)\neq\emptyset.$$

• We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.

(4月) トイヨト イヨト

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_p(A_1)$ may be empty if p > m/2.

イロト イボト イヨト イヨト

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_p(A_1)$ may be empty if p > m/2.
- If Λ_ρ(A) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_p(A_1)$ may be empty if p > m/2.
- If Λ_ρ(A) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

イロト 不得下 イヨト イヨト 二日

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_p(A_1)$ may be empty if p > m/2.
- If Λ_ρ(A) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

イロト 不得下 イヨト イヨト 二日

• The set may not be convex if m > 2.

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_p(A_1)$ may be empty if p > m/2.
- If Λ_ρ(A) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

- The set may not be convex if m > 2.
- Open problem Characterize $\mathbf{A} = (A_1, \dots, A_m)$ so that $\Lambda_p(\mathbf{A})$ is convex.

• There is no general convexity result for $\Lambda_p(\mathbf{A})$!

イロト イヨト イヨト イヨト

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

向下 イヨト イヨト

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

向下 イヨト イヨ

• Star-shaped domains are useful in pure or applied study.

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

(4月) トイヨト イヨト

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li, Poon, 2009, 2011] and [Li, Poon, Sze, 2009, 2012]

Let $A_1, \ldots, A_m \in B(H)^m$ be self-adjoint operators, $p \in \mathbb{N}$, and N = p(m+2).

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_1, \ldots, A_m \in B(H)^m$ be self-adjoint operators, $p \in \mathbb{N}$, and N = p(m+2). Suppose dim $H \ge (N-1)(m+1)^2$, which is trivially true if dim $H = \infty$.

- There is no general convexity result for $\Lambda_p(\mathbf{A})$!
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_1, \ldots, A_m \in B(H)^m$ be self-adjoint operators, $p \in \mathbb{N}$, and N = p(m+2). Suppose dim $H \ge (N-1)(m+1)^2$, which is trivially true if dim $H = \infty$. (a) The set $\Lambda_N(\mathbf{A})$ is non-empty.

- There is no general convexity result for $\Lambda_{\rho}(\mathbf{A})!$
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

イロト イポト イヨト イヨト

- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_1, \ldots, A_m \in B(H)^m$ be self-adjoint operators, $p \in \mathbb{N}$, and N = p(m + 2). Suppose dim $H \ge (N - 1)(m + 1)^2$, which is trivially true if dim $H = \infty$. (a) The set $\Lambda_N(\mathbf{A})$ is non-empty. (b) Every element in $\operatorname{conv} \Lambda_N(\mathbf{A}) \subseteq \Lambda_p(\mathbf{A})$ is a star-center of $\Lambda_p(\mathbf{A})$.

Chi-Kwong Li, College of William & Mary Numerical range techniques, quantum information science

伺下 イヨト イヨト

• The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

 If Λ_{p,q}(A) is non-empty, one can construct better quantum error correction schemes.

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

- If Λ_{p,q}(A) is non-empty, one can construct better quantum error correction schemes.
- Find the smallest dim H that ensures $\Lambda_{\rho}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.

(4月) トイラト イラト

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

- If Λ_{p,q}(A) is non-empty, one can construct better quantum error correction schemes.
- Find the smallest dim H that ensures $\Lambda_{\rho}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.
- Find the smallest dim H that ensures $\Lambda_{p,q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

- If Λ_{p,q}(A) is non-empty, one can construct better quantum error correction schemes.
- Find the smallest dim H that ensures $\Lambda_{\rho}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.
- Find the smallest dim H that ensures $\Lambda_{p,q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.
- Study the convexity of Λ_{p,q}(A₁,..., A_m) for A₁,..., A_m with special structure (arising in applications).

イロト イポト イヨト イヨト

- The result has been further extended to the joint (*p*, *q*)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of (A₁,..., A_m) is the set of m-tuples (B₁,..., B_m) ∈ M^m_q for the existence of X with X^{*}X = I_{pq} such that

$$X^*A_jX = I_p \otimes B_j = \begin{pmatrix} B_j & & \\ & \ddots & \\ & & B_j \end{pmatrix}, \qquad j = 1, \dots, m.$$

- If Λ_{p,q}(A) is non-empty, one can construct better quantum error correction schemes.
- Find the smallest dim H that ensures $\Lambda_{\rho}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.
- Find the smallest dim H that ensures $\Lambda_{p,q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^m$.
- Study the convexity of Λ_{p,q}(A₁,..., A_m) for A₁,..., A_m with special structure (arising in applications).
- Apply the results to quantum information science.

イロト イポト イヨト イヨト

Your comments are most welcome! Thank you for your attention!