Numerical range techniques in Quantum information science

Chi-Kwong Li
(Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with \mathbf{M}_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}$.
- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with \mathbf{M}_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}$.
- The numerical range of $A \in B(H)$ is the set

$$
W(A)=\{\langle A x, x\rangle: x \in H,\langle x, x\rangle=1\}
$$

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with \mathbf{M}_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}$.
- The numerical range of $A \in B(H)$ is the set

$$
W(A)=\{\langle A x, x\rangle: x \in H,\langle x, x\rangle=1\}
$$

- If $A \in \mathbf{M}_{n}$, then $W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with \mathbf{M}_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}$.
- The numerical range of $A \in B(H)$ is the set

$$
W(A)=\{\langle A x, x\rangle: x \in H,\langle x, x\rangle=1\} .
$$

- If $A \in \mathbf{M}_{n}$, then $W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}$.
- The numerical range of A can be viewed as a "picture" of the operator A containing useful information of the operator A. Every point $\langle A x, x\rangle$ is a "pixel" of the picture.

Examples and Convexity

- Note that $W(A)=W\left(U^{*} A U\right)$ if U is unitary.
- If $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$, then $W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1\}$ is the unit disk centered at the origin.

Examples and Convexity

- Note that $W(A)=W\left(U^{*} A U\right)$ if U is unitary.
- If $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$, then $W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1\}$ is the unit disk centered at the origin.

- More generally, if $A=\left(\begin{array}{cc}a_{1} & b \\ 0 & a_{2}\end{array}\right)$, then $W(A)$ is the elliptical disk with foci a_{1}, a_{2} and minor axis of length $|b|$.

Examples and Convexity

- Note that $W(A)=W\left(U^{*} A U\right)$ if U is unitary.
- If $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$, then $W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1\}$ is the unit disk centered at the origin.

- More generally, if $A=\left(\begin{array}{cc}a_{1} & b \\ 0 & a_{2}\end{array}\right)$, then $W(A)$ is the elliptical disk with foci a_{1}, a_{2} and minor axis of length $|b|$.

- If $A=\left(\begin{array}{lll}a_{1} & & \\ & a_{2} & \\ & & a_{3}\end{array}\right)$, then $W(A)$ is the triangular disk with vertices a_{1}, a_{2}, a_{3}.

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;
- $A=A^{*}$ if and only if $W(A) \subseteq \mathbb{R}$;

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;
- $A=A^{*}$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq[0, \infty)$;

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;
- $A=A^{*}$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq[0, \infty)$;

Remarks Finding all values $\langle A x, x\rangle$ is difficult.

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;
- $A=A^{*}$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq[0, \infty)$;

Remarks Finding all values $\langle A x, x\rangle$ is difficult.
One may consider $\langle A x, x\rangle$ for some random unit vectors.

Some basic (useful) properties

Theorem [Töplitz-Hausdorff, 1918-19]

The numerical range of $A \in B(H)$ is always convex,
i.e., $\left\{t \mu_{1}+(1-t) \mu_{2}: t \in[0,1]\right\} \subseteq W(A)$ whenever $\mu_{1}, \mu_{2} \in W(A)$.

Proposition

Let $A \in B(H)$.

- $A=\mu I$ if and only if $W(A)=\{\mu\}$;
- $A=A^{*}$ if and only if $W(A) \subseteq \mathbb{R}$;
- A is positive semidefinite if and only if $W(A) \subseteq[0, \infty)$;

Remarks Finding all values $\langle A x, x\rangle$ is difficult.
One may consider $\langle A x, x\rangle$ for some random unit vectors.
Then estimate the probability that $A=\lambda I, A=A^{*}, A \geq 0$, etc.

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information.

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information. An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information. An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is $x^{*} A x$ if one can apply the measurement to many identical copies of x.

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information. An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is $x^{*} A x$ if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix A, the set of expected values of the measurement for all quantum states is

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information. An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is $x^{*} A x$ if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix A, the set of expected values of the measurement for all quantum states is

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

- In general, we use the initial state $x_{0}=(1,0, \ldots, 0)^{t}$, and find suitable U and A such that the measurement of $x=U_{0}$ give useful information.

Quantum Computing

- Information is encoded in a quantum state, which is represented as unit vectors $x_{0} \in \mathbb{C}^{n}$. (Quantum postulate 1.)
- Apply a quantum operation, which is a unitary operator, to the quantum state: $x_{0} \mapsto x=U x_{0}$. (Quantum postulate 3.)
- Apply a measurement to x to extract useful information. An observable is associated with a Hermitian matrix A so that a measurement of x will yield an eigenvalue λ of A, and x will "collapse" to an unit eigenvector v of λ. (Quantum postulate 2.)
- The expectation of the observable is $x^{*} A x$ if one can apply the measurement to many identical copies of x.
- So, for an observable associated with the Hermitian matrix A, the set of expected values of the measurement for all quantum states is

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

- In general, we use the initial state $x_{0}=(1,0, \ldots, 0)^{t}$, and find suitable U and A such that the measurement of $x=U_{0}$ give useful information.
- Many theoretical and implementation issues have to be addressed.

The joint numerical range

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}. Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

The joint numerical range
In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

- The set $W\left(A_{1}, A_{2}, A_{3}\right)$ may not be convex. For example, if

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

- The set $W\left(A_{1}, A_{2}, A_{3}\right)$ may not be convex. For example, if

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

then $W\left(A_{1}, A_{2}, A_{3}\right)=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right): \mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}=1\right\}$.

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

- The set $W\left(A_{1}, A_{2}, A_{3}\right)$ may not be convex. For example, if

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

then $W\left(A_{1}, A_{2}, A_{3}\right)=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right): \mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}=1\right\}$.

- (Au-Yeung and Poon, 1979) If $n \geq 3$ and $\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right) \in \mathbf{M}_{n}$ is a triple of Hermitian matrices, then $W(\mathbf{A})$ is convex.

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

- The set $W\left(A_{1}, A_{2}, A_{3}\right)$ may not be convex. For example, if

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

then $W\left(A_{1}, A_{2}, A_{3}\right)=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right): \mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}=1\right\}$.

- (Au-Yeung and Poon, 1979) If $n \geq 3$ and $\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right) \in \mathbf{M}_{n}$ is a triple of Hermitian matrices, then $W(\mathbf{A})$ is convex.
- If $m \geq 4$, then $W\left(A_{1}, \ldots, A_{m}\right)$ may not be convex even if $\operatorname{dim} H=\infty$.

The joint numerical range

In some problems, it is useful to consider different observables A_{1}, \ldots, A_{m}.
Define the joint numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ by

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{m}
$$

- Let $A=A_{1}+i A_{2} \in B(H)$, where $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}$. Then

$$
W(A) \equiv W\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1} x, x\right\rangle,\left\langle A_{2} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} \subseteq \mathbb{R}^{2}
$$

- The set $W\left(A_{1}, A_{2}, A_{3}\right)$ may not be convex. For example, if

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

then $W\left(A_{1}, A_{2}, A_{3}\right)=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right): \mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}=1\right\}$.

- (Au-Yeung and Poon, 1979) If $n \geq 3$ and $\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right) \in \mathbf{M}_{n}$ is a triple of Hermitian matrices, then $W(\mathbf{A})$ is convex.
- If $m \geq 4$, then $W\left(A_{1}, \ldots, A_{m}\right)$ may not be convex even if $\operatorname{dim} H=\infty$.
- Open problem. Characterize $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ such that $W(\mathbf{A})$ is convex.

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^{n}$ and $(\alpha, \beta)=\left(x^{*} A x, x^{*} B x\right)$,

$$
x^{*}(A-\alpha I)^{2} x x^{*}(B-\beta I)^{2} x \geq\left|x^{*}(A B-B A) x\right|^{2}
$$

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^{n}$ and $(\alpha, \beta)=\left(x^{*} A x, x^{*} B x\right)$,

$$
x^{*}(A-\alpha I)^{2} x x^{*}(B-\beta I)^{2} x \geq\left|x^{*}(A B-B A) x\right|^{2}
$$

- This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $A B \neq B A$.

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^{n}$ and $(\alpha, \beta)=\left(x^{*} A x, x^{*} B x\right)$,

$$
x^{*}(A-\alpha I)^{2} x x^{*}(B-\beta I)^{2} x \geq\left|x^{*}(A B-B A) x\right|^{2}
$$

- This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $A B \neq B A$.

- Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^{n}$ and $(\alpha, \beta)=\left(x^{*} A x, x^{*} B x\right)$,

$$
x^{*}(A-\alpha I)^{2} x x^{*}(B-\beta I)^{2} x \geq\left|x^{*}(A B-B A) x\right|^{2}
$$

- This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $A B \neq B A$.

- Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.
- (Li, Poon, Wang, 2020) A set $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq \mathbf{M}_{n}$ has commuting normal matrices if and only if

Commuting family of Hermitian matrices

- If A_{1}, \ldots, A_{m} are mutually commuting Hermitian matrices, then $W(\mathbf{A})$ is a polyhedral set, i.e., the convex hull of a finite set.
- In quantum mechanics, if A, B are Hermitian matrices, then for any unit vector $x \in \mathbb{C}^{n}$ and $(\alpha, \beta)=\left(x^{*} A x, x^{*} B x\right)$,

$$
x^{*}(A-\alpha I)^{2} x x^{*}(B-\beta I)^{2} x \geq\left|x^{*}(A B-B A) x\right|^{2}
$$

- This is known as the uncertainty principle.

The product of the variances of the observables associated with A, B is bounded away from 0 if $A B \neq B A$.

- Current research Generalize the uncertainty principle to multiple observables (Hermitian matrices), and determine the equality case.
- (Li, Poon, Wang, 2020) A set $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq \mathbf{M}_{n}$ has commuting normal matrices if and only if there is a positive integer k with $|n / 2-k| \leq 1$ such that the joint k-numerical range

$$
W_{k}\left(A_{1}, \ldots, A_{m}\right)=\left\{\left(\operatorname{tr} A_{1} P, \ldots, \operatorname{tr} A_{m} P\right): P \in \mathbf{D}_{n}, P=k P^{2}\right\}
$$

is a polyhedral set.

$$
k P=(k P)^{2} \text { is a rank } j \text { Hermitian projection. }
$$

The joint higher rank numerical range

The joint rank p-numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ is the set $\Lambda_{p}(\mathbf{A})$ of real m-tuples $\left(a_{1}, \ldots, a_{m}\right)$ for the existence of a unitary $U \in \mathbf{M}_{n}$ satisfying

$$
U^{*} A_{j} U=\left(\begin{array}{cc}
a_{j} l_{p} & \star \\
\star & \star
\end{array}\right), \quad j=1, \ldots, m .
$$

The joint higher rank numerical range

The joint rank p-numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ is the set $\Lambda_{p}(\mathbf{A})$ of real m-tuples $\left(a_{1}, \ldots, a_{m}\right)$ for the existence of a unitary $U \in \mathbf{M}_{n}$ satisfying

$$
U^{*} A_{j} U=\left(\begin{array}{cc}
a_{j} l_{p} & \star \\
\star & \star
\end{array}\right), \quad j=1, \ldots, m .
$$

If V_{p} is the set of operator $X: \mathbb{C}^{p} \rightarrow H$ such that $X^{*} X=I_{p}$, then

$$
\Lambda_{p}(\mathbf{A})=\left\{\left(a_{1}, \ldots, a_{m}\right): X^{*} A_{j} X=a_{j} I_{p} \text { for some } X \in V_{p}\right\}
$$

The joint higher rank numerical range

The joint rank p-numerical range of $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ is the set $\Lambda_{p}(\mathbf{A})$ of real m-tuples $\left(a_{1}, \ldots, a_{m}\right)$ for the existence of a unitary $U \in \mathbf{M}_{n}$ satisfying

$$
U^{*} A_{j} U=\left(\begin{array}{cc}
a_{j} l_{p} & \star \\
\star & \star
\end{array}\right), \quad j=1, \ldots, m .
$$

If V_{p} is the set of operator $X: \mathbb{C}^{p} \rightarrow H$ such that $X^{*} X=I_{p}$, then

$$
\Lambda_{p}(\mathbf{A})=\left\{\left(a_{1}, \ldots, a_{m}\right): X^{*} A_{j} X=a_{j} I_{p} \text { for some } X \in V_{p}\right\} .
$$

This concept was introduced in [Choi, Kribs, Zyczkowski, 2006] for the study of quantum error correction schemes.

Quantum error correction

- A quantum channel acting on \mathbf{D}_{n} is represented by a trace preserving completely positive (TPCP) map $\mathcal{E}: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ of the form

$$
\mathcal{E}(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}
$$

where $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

Quantum error correction

- A quantum channel acting on \mathbf{D}_{n} is represented by a trace preserving completely positive (TPCP) map $\mathcal{E}: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ of the form

$$
\mathcal{E}(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}
$$

where $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- An error correction code is a subspace $V \subseteq \mathbb{C}^{n}$ for the existence of a TPCP map (known as the recovery channel) \mathcal{R} such that

$$
\mathcal{R} \circ \mathcal{E}(A)=A \quad \text { whenever } \quad P_{V} A P_{V}=A
$$

where P_{V} is the orthogonal projection with range space V.

Quantum error correction

- A quantum channel acting on \mathbf{D}_{n} is represented by a trace preserving completely positive (TPCP) map $\mathcal{E}: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ of the form

$$
\mathcal{E}(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}
$$

where $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- An error correction code is a subspace $V \subseteq \mathbb{C}^{n}$ for the existence of a TPCP map (known as the recovery channel) \mathcal{R} such that

$$
\mathcal{R} \circ \mathcal{E}(A)=A \quad \text { whenever } \quad P_{V} A P_{V}=A
$$

where P_{V} is the orthogonal projection with range space V.

- We can always find a basis $\left\{A_{1}, \ldots, A_{k}\right\}$ of $\operatorname{span}\left\{F_{i}^{*} F_{j}: 1 \leq i, j \leq r\right\}$ consisting of Hermitian matrices.

Quantum error correction

- A quantum channel acting on \mathbf{D}_{n} is represented by a trace preserving completely positive (TPCP) map $\mathcal{E}: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ of the form

$$
\mathcal{E}(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}
$$

where $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- An error correction code is a subspace $V \subseteq \mathbb{C}^{n}$ for the existence of a TPCP map (known as the recovery channel) \mathcal{R} such that

$$
\mathcal{R} \circ \mathcal{E}(A)=A \quad \text { whenever } \quad P_{V} A P_{V}=A
$$

where P_{V} is the orthogonal projection with range space V.

- We can always find a basis $\left\{A_{1}, \ldots, A_{k}\right\}$ of $\operatorname{span}\left\{F_{i}^{*} F_{j}: 1 \leq i, j \leq r\right\}$ consisting of Hermitian matrices.
- Then \mathcal{E} has a quantum error correction of dimension p if and only if

$$
\Lambda_{p}\left(A_{1}, \ldots, A_{m}\right) \neq \emptyset
$$

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_{p}\left(A_{1}\right)$ may be empty if $p>m / 2$.

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_{p}\left(A_{1}\right)$ may be empty if $p>m / 2$.
- If $\Lambda_{\rho}(\mathbf{A})$ is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_{p}\left(A_{1}\right)$ may be empty if $p>m / 2$.
- If $\Lambda_{\rho}(\mathbf{A})$ is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.
[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_{p}\left(A_{1}\right)$ may be empty if $p>m / 2$.
- If $\Lambda_{\rho}(\mathbf{A})$ is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.
[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]
- The set may not be convex if $m>2$.

Some results and problems

- We (Li, Nakahara, Poon, Sze, Tomita, etc.) have used the result to construct quantum error correction for different channels.
- In general, the set $\Lambda_{p}\left(A_{1}\right)$ may be empty if $p>m / 2$.
- If $\Lambda_{\rho}(\mathbf{A})$ is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
- However, one only has convexity if $m \leq 2$.
[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]
- The set may not be convex if $m>2$.
- Open problem Characterize $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ so that $\Lambda_{p}(\mathbf{A})$ is convex.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_{1}, \ldots, A_{m} \in B(H)^{m}$ be self-adjoint operators, $p \in \mathbb{N}$, and $N=p(m+2)$.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_{1}, \ldots, A_{m} \in B(H)^{m}$ be self-adjoint operators, $p \in \mathbb{N}$, and $N=p(m+2)$. Suppose $\operatorname{dim} H \geq(N-1)(m+1)^{2}$, which is trivially true if $\operatorname{dim} H=\infty$.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_{1}, \ldots, A_{m} \in B(H)^{m}$ be self-adjoint operators, $p \in \mathbb{N}$, and $N=p(m+2)$. Suppose $\operatorname{dim} H \geq(N-1)(m+1)^{2}$, which is trivially true if $\operatorname{dim} H=\infty$.
(a) The set $\Lambda_{N}(\mathbf{A})$ is non-empty.

Star-shapedness

- There is no general convexity result for $\Lambda_{p}(\mathbf{A})$!
- Recall that a set $\mathcal{S} \subseteq \mathbb{R}^{N}$ is star-shaped if there is a star center $v_{0} \in \mathcal{S}$ such that the line segment joining v_{0} to any other point $v \in \mathcal{S}$ lie in \mathcal{S}.
- Star-shaped domains are useful in pure or applied study.
- A star-shaped set may have more than one star center.
- In a convex set, every element is a star center.

Theorem [Li,Poon, 2009,2011] and [Li,Poon,Sze, 2009,2012]

Let $A_{1}, \ldots, A_{m} \in B(H)^{m}$ be self-adjoint operators, $p \in \mathbb{N}$, and $N=p(m+2)$.
Suppose $\operatorname{dim} H \geq(N-1)(m+1)^{2}$, which is trivially true if $\operatorname{dim} H=\infty$.
(a) The set $\Lambda_{N}(\mathbf{A})$ is non-empty.
(b) Every element in $\operatorname{conv} \Lambda_{N}(\mathbf{A}) \subseteq \Lambda_{p}(\mathbf{A})$ is a star-center of $\Lambda_{p}(\mathbf{A})$.

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

- If $\Lambda_{p, q}(\mathbf{A})$ is non-empty, one can construct better quantum error correction schemes.

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

- If $\Lambda_{p, q}(\mathbf{A})$ is non-empty, one can construct better quantum error correction schemes.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

- If $\Lambda_{p, q}(\mathbf{A})$ is non-empty, one can construct better quantum error correction schemes.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p, q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

- If $\Lambda_{p, q}(\mathbf{A})$ is non-empty, one can construct better quantum error correction schemes.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p, q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.
- Study the convexity of $\Lambda_{p, q}\left(A_{1}, \ldots, A_{m}\right)$ for A_{1}, \ldots, A_{m} with special structure (arising in applications).

Related concepts and further research

- The result has been further extended to the joint (p, q)-matricial range in [Lau, Li, Poon, Sze, 2017].
- The joint (p, q)-matricial range of $\left(A_{1}, \ldots, A_{m}\right)$ is the set of m-tuples $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ for the existence of X with $X^{*} X=I_{p q}$ such that

$$
X^{*} A_{j} X=I_{p} \otimes B_{j}=\left(\begin{array}{ccc}
B_{j} & & \\
& \ddots & \\
& & B_{j}
\end{array}\right), \quad j=1, \ldots, m
$$

- If $\Lambda_{p, q}(\mathbf{A})$ is non-empty, one can construct better quantum error correction schemes.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.
- Find the smallest $\operatorname{dim} H$ that ensures $\Lambda_{p, q}(\mathbf{A}) \neq \emptyset$ for all $\mathbf{A} \in B(H)^{m}$.
- Study the convexity of $\Lambda_{p, q}\left(A_{1}, \ldots, A_{m}\right)$ for A_{1}, \ldots, A_{m} with special structure (arising in applications).
- Apply the results to quantum information science.

Your comments are most welcome!

Thank you for your attention!

